Prediction of Inelastic Response Spectra Using Artificial Neural Networks
نویسندگان
چکیده
Several studies have been oriented to develop methodologies for estimating inelastic response of structures; however, the estimation of inelastic seismic response spectra requires complex analyses, in such a way that traditional methods can hardly get an acceptable error. In this paper, an Artificial Neural Network ANN model is presented as an alternative to estimate inelastic response spectra for earthquake ground motion records. The moment magnitude MW , fault mechanism FM , Joyner-Boore distance dJB , shear-wave velocity Vs30 , fundamental period of the structure T1 , and themaximumductility μu were selected as inputs of the ANNmodel. Fifty earthquake ground motions taken from the NGA database and recorded at sites with different types of soils are used during the training phase of the Feedforward Multilayer Perceptron model. The Backpropagation algorithm was selected to train the network. The ANN results present an acceptable concordance with the real seismic response spectra preserving the spectral shape between the actual and the estimated spectra.
منابع مشابه
Product Yields Prediction of Tehran Refinery Hydrocracking Unit Using Artificial Neural Networks
متن کامل
Prediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کاملRapid and Simultaneous Determination of Montelukast, Fexofenadine and Cetirizine Using Partial Least Squares and Artificial Neural Networks Modeling
Simultaneous determination of pharmaceutical compounds and accurate quantitative prediction of them are of great interest in the clinical and laboratory-based investigations.This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, montelukast (MONT), fexofenadine ...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کامل